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A canonical (contact) transformation is performed on the time variable (in 
extended phase space) to reexpress relativistic dynamics in terms of proper time, 
leaving the generalized coordinates and canonical momentum as functions of 
this time variable. The form of the energy functional conjugate to this time 
variable is seen to be similar to that of a nonrelativistic dynamics at all values 
of particle momenta. The formulation is explored for single- and multiparticle 
classical systems. The (form) invariance of the theory is determined by a group 
which results from a similarity action of the contact group on the Poincar6 
group. One advantage of this approach is that it overcomes the no-interaction 
difficulties introduced by standard methods. 

1. I N T R O D U C T I O N  

1.1. Background 

In 1864, 1 year before the end of  the American Civil War,  James Clark 
Maxwell submitted his theory o f  electrodynamics (Maxwell,  1865, 1981); 
15 years later Albert  Einstein was born.  In the intervening 41 years between 
Maxwell and the introduct ion o f  the special theory o f  relativity in 1905, a 
scientific revolution had taken firm roots. Maxwell 's  theory had provided 
answers to almost  all major  questions in electromagnetism and optics. 
F r o m  the practical point  o f  view, the electric light had been invented and 
electricity was well on the way toward providing what  we now consider 
normal.  On  the other  hand, the work  o f  Newton  (1687, 1966) and his con- 
temporaries  was already well unders tood and it was believed that  complete 
unders tanding only awaited sufficient mathematics  to assist in tidying up 
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the theory. Mechanics at this time was in the hands of engineers and 
mathematicians and much of it was not considered mainstream physics. 
From this point of view, it comes as no surprise that when problems arose 
in the interface between mechanics and electromagnetism, the physics 
community was more than ready to keep the Maxwell theory intact and 
seek modification of the Newtonian theory. 

When Einstein (1950a,b) and his contemporaries began to study the 
issues associated with the foundations of electrodynamics, they had a 
number of options open to them in addressing the fact that the Newtonian 
theory and Maxwell theory were invariant under different transformation 
groups: 

1. Both theories were incorrect and the proper theory was yet to be 
found. 

2. The Maxwell theory was incorrect and the proper theory would be 
invariant under the Galilean group. 

3. The Maxwell theory was correct and a proper Newtonian theory 
would be invariant under the Lorentz group. 

4. The assumption of an ether for electromagnetic propagation was 
correct, so that Galilean relativity applied to mechanics, while 
electromagnetism had a preferred reference frame. 

At the time it was unthinkable that the Maxwell theory had any serious 
flaws. Lorentz had recently shown that all the macroscopic phenomena of 
electrodynamics and optics could be accounted for based on the analysis of 
the microscopic behavior of electrons and ions [Lorentz (1903); for the 
original papers see Lorentz (1892)]. 

Einstein rejected the fourth possibility and proposed that all physical 
theories should satisfy the (now well-known) postulates of special relativity: 

1. The physical laws of nature and the results of all experiments are 
independent of the particular inertial frame of the observer (in 
which the experiment is performed). 

2. The speed of light is independent of the motion of the source. 

The first postulate abandons the notion of absolute space, while the second 
abandons absolute time. It is important to note that another postulate is 
required in order to implement the above two postulates: 

32 The correct implementation of postulates 1 and 2 requires that we 
represent time as a fourth coordinate, and constrain the relation- 
ship between components so as to satisfy the natural invariance 
induced by the Lorentz group (of electromagnetism); Minkowski 
space. 
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This third postulate was made by Minkowski, a well-known mathemati- 
cian, and was embraced by many. Others (including Einstein) regarded it as 
a mathematical abstraction lacking physical content. The feeling among 
many of the leading physicists at that time was that an alternate implemen- 
tation should be possible which preserved some remnant of an "absolute 
time" variable while still allowing for the constancy of the speed of light. 
The works of Ritz (1908a,b, 1912) and Tolman (1910a,b) are notable in 
this direction. The inability to obtain a viable alternative directed by 
physical considerations forced acceptance of the current implementation. 

1.2. Problems 

It is clear that something is amiss in that a recurring set of serious 
problems have continued to block the successful implementation of the first 
two postulates. Of course the one-particle theory is trivial; however, the 
two-body theory is still a major problem. It should be noted that there does 
not exist a relativistic analog of the (Newtonian) reduction of the two-body 
problem (Rohrlich, 1979; Dirac, 1977; Rosen, 1969). Pryce (1948) showed 
that there were serious problems with center-of-mass invariance for any 
attempted implementation. The no-interaction theorem of Currie (Currie et 
al., 1963) showed that the reasonable assumptions of Hamiltonian formula- 
tion, independent (canonical) particle variables, and invariance under the 
Lorentz group were only compatible with noninteracting particles. This 
problem has continued to prevent the construction of a satisfactory inter- 
acting N-body relativistic theory. Van-Dam and Wigner (1965, 1966) gave 
up a Hamiltonian formulation and generalized earlier work of Wheeler and 
Feynman (1945, 1949) in order to bypass the difficulty. Since it is very 
difficult to conceive of a mechanics without an "energy function," this 
approach has not been acceptable to all; furthermore, such approaches 
present other problems when one attempts quantization; see, however, the 
work of Hoyle and Narlikar (1969) and Davis (1970) (see also Pegg, 1979). 

An alternate approach which has current favor is to relax the require- 
ment of canonical variables (Kerner, 1972; Rohrlich, 1979; Longhi and 
Lusanna, 1986). The problem with this approach is that it leads to many 
possible theories. Recent work by Longhi and Lusanna (1986) has shown 
that many of the most actively studied appr'6aches are locally equivalent. 
This cannot be considered satisfactory until global equivalence is estab- 
lished (since we hope that physical reality is unique). The recent work of 
Longhi et al. (1989) is particularly noteworthy in that they derive relation- 
ships between canonical and noncanonical variables by taking a novel 
many-times approach. 
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1.3. Purpose 

The purpose of this paper is to propose an alternate implementation of 
the first two postulates without introducing time as a fourth coordinate. 
Our approach is based on the observation that we may use the invariant 
proper time variable in place of the observer time variable in the descrip- 
tion of the system dynamics. To be sure, the use of this variable is not new; 
however, we treat the transformation from observer time to system proper 
time as a canonical (contact) transformation on extended phase space. This 
approach forces the identification of the canonical Hamiltonian which 
generates the Lie algebra bracket. This leads to a conceptually (and 
technically) much simpler implementation of the special theory of relativity. 

2. SINGLE-PARTICLE F O R M U L A T I O N  

The dynamics of a classical observable can be conveniently studied 
using Hamiltonian dynamics. The Poisson bracket is defined as 

OA ~B ~A OB 
{A(p, q), B(p, q)} = 3p Oq Oq ap 

The Hamilton equations OH/Op = O and OH/Oq = - P  then ensure that the 
time development of an arbitrary classical function W(q, p, t) is given by 

dW C W)  (1) -~ (q,p, t) = {1t, W(q,p, t)} + - ~  q,p 

Next, define the proper time v through the relation 

dt=--H dr (2) 
mc 2 

The time evolution of the function W is given by the chain rule 

dW dW dt H . W} + (OW) 
dr - ~ -~z = m c  2 { H ,  ~-z q , p  

An energy functional K conjugate to the time z will be defined to satisfy 

{K, W} = ~ c  2 {H, W} 
(3) 

K [ H=mc 2 ~ H = me 2 

Henceforth units will assume c = 1. If the mass m remains invariant during 
the dynamics, the form of the functional K can be directly determined as 

H 2 m 
K = ~mm + 5 (4) 
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or, more generally, if m0 is a well-defined mass point 

fm r t n H '  K =mo + ~ dH' = mo + dH" (5) 
o 3too rn 

The evolution of the function W in terms of  r can be expressed now as 
follows: 

= [K, W} + O---~- (6) 

Consider the behavior of a single, noninteracting particle of mass m, 
with momentum p as measured in some inertial frame. The usual form of  
the Hamiltonian representing this system is H = (pZ +m2)1/2. For  this 
example, the conjugate proper energy is given by K =p2/2m + m. Several 
interesting points should be noted: 

a. The functional form of  the energy K is the same as that of the 
nonrelativistic energy of the system, even though the system is fully 
relativistic. 

b. The momentum parameter in the functional form of  the energy K 
is the momentum as measured in the original inertial frame, not the proper 
frame of  the particle (which of course would measure zero momentum). 
This reemphasizes the form of the transformation as a canonical time 
transformation, and not a Lorentz transformation. 

c. If the particle were to interact with external influences, the proper 
frame would not be an inertial frame, but the proper time is always defined, 
and in fact is the only true time relevant to the particle itself. 

d. As a particular example of  equation (6), the "Hamilton equations" 
for the q and p variables are given in terms of time z by 

dq OK dp OK 
dz - 3p' dz - Oq (7) 

e. The troublesome square root in the Hamiltonian is absent in the 
form of K. 

3. T R A N S F O R M A T I O N  G R O U P  

As was noted earlier, the proper time is invariant for all inertial 
observers; however, different observers will use different Hamiltonians to 
describe the phase flow of the system. In order to relate the phase flows 
from different inertial observers we note that the proper-time transforma- 
tions are a subgroup of the full group of transformations on the extended 
phase space. It should be further noted that this subgroup includes the 
group of symplectic diffeomorphisms (they do not transform time). 
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Consider two inertial observers in frames X and X' with (extended) 
phase space coordinates (p, q, t) and (p', q', t'), respectively (for the dynam- 
ics of some system). We let ~ be the set of Poincar6 transformations on 
space-time reference frames in particular, (P(X, X'):  X ~ X') .  We denote by 
C the set of canonical proper-time transformations defined on extended 
phase space. We let the map from (p, q, t) ~ (p, q, z) be denoted by C(q, t, z). 

Theorem I. The proper-time coordinates X are related to those on X' 
by the transformation 

Sm[q', q, ~] = C[q', C, ~]~m(X, X')C--'[q, t, ~] (8) 

Proof. The proof follows from the obvious commutativity of the 
following diagram: 

(p, q, t) ~m(X, X') (p', q', t') 

X , X '  

(p, q, z) (p', q', r ')  

It is easy to prove that for each fixed (observed) system, the set of 
proper-time transformations between inertial observers is a group which 
relates the dynamics viewed by one (inertial) observer to those of any other. 

We use the mass as a subscript in order to fix the observed system. The 
group of proper-time transformations depends on 14 parameters 
(m, p, q, p', q', z). It follows that the (free-particle) laws will be the same for 
all inertial observers and will be (form) invariant under a similarity group 
action on the Poincar6 group. 

3. VARIATIONAL APPROACH 

In order to obtain the general functional for the contact transformation, 
we can use the fundamental theorem on the integral invariant of Poincar~- 
Cartan, dr = p �9 dq - H dr, which states: 

Theorem 2 (Arnold, 1978, p; 237). If two curves 71 and 72 encircle the 
same tube of phase trajectories of the equations 

d p _  dH d q _ d H  (9) 
dt ~q '  dt ~p 
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then the integrals of the form doo = p .  dq - H d t  along ~ and 72 are equal, 

~ ( p . d q - H d t ) = ~  ( p . d q - H d t )  
1 2 

This theorem can be used to prove: 

Theorem 3 (Arnold, 1978, p. 241). Let (P, Q, T) be a coordinate 
system on the extended phase space (p,q, t) with K(P ,Q,  T) and 
S(P, Q, T) functions such that p �9 dq - H d t  = P . d Q  - K d T +  dS. Then 
the trajectories of the phase flow of equation (9) are represented in the 
coordinates (P, Q, T) by the integral curves of the canonical equations 

dP  aK  d Q  OK d K  OK 

clT OQ' d T  o e '  d T  a T  (10) 

For a noninteracting particle [H = ( p 2 +  m2)m] the corresponding conju- 
gate variables with d T  = dz = dt/y are 

dq 
q(t), P = 7m 

dQ 
Q(z) = q(t(z)), P = m - -  

dz 

SO 

p(t(z)) = P(z), q(t(z)) = Q(z), dt = y & 

The integral invariant satisfies 

p(t) �9 dq(t) - H dt = P(z) �9 dO(z) 

= P ( z )  �9 d Q ( z )  - + dt 

H 2 

It follows that dS  = ( m / 2 - H 2 / 2 m ) & ;  thus the transformation is truly 
canonical iff dS  is a total differential (closed 1-form). Since m is positive 
and H2/2m does not change sign as a function of z(t), it follows that 
~ dS  =0 .  

It might be somewhat enlightening to examine alternate function- 
al forms for the conjugate proper functional K. For a system of mass 
(rest energy) M and three-velocity v the energy-momentum satisfies 
E 2 - P"  P = M 2 (invariant). 
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Three methods will be examined for the integration in Equation (5): 

a. Hold M fixed, allow the v Lorentz frame to vary: 

H 2 M 
K(,)(H) = ~-~ + ~- 

which is the previously obtained result. 
b. Hold the three-momentum P = P0 fixed, allow H, M, and v to vary: 

K(2)(H ) = [H 2 _ p2] 1/2 = M 

This form represents the proper energy functional as the rest energy of the 
system. The integration serves to build up the mass and velocity of the 
system from an initial mass point Mo at fixed momentum Po. 

c. Hold the v (Lorentz) frame fixed, allow H, P, and M to vary: 

H 2 
K ( 3 ) ( H )  = 

Here, the integration builds up the mass from an initial mass point Mo. 
This form was derived in Gill (1982). 

The advantages or problems associated with each of  these forms will 
be examined briefly later, as regards the system decomposition in multipar- 
ticle systems. 

Next, consider the application of  the above formulations to a system 
with an internal one-parameter Abelian gauge symmetry group (like 
electromagnetism). If  the energy H and the momentum P satisfy 
H 2 - P �9 P --- m 2, where m is a Lorentz invariant, then we can still write the 
connection between the inertial and a proper time as follows: 

dt = H dz (12) 
m 

Since the energy is not generally gauge invariant, one expects the ratio of 
energy to the energy in the zero-momentum f r a m e  as defined above not to 
be gauge invariant. Alternatively, one could define the gauge-invariant 
ratio 

H - eq5 
dt - m~  - ~ - ~ ,  dz (13) 

where the quantities m * - e ~ b *  represent the form of  H -  e~b in the 
zero-velocity f rame,  where as usual the velocity is given by dq/dt  = 
{H, q} = 3H/~p.  The gauge coupling constant is represented by e in the 
previous expressions, and ~b represents the potential component of a 
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covariant form of the gauge potential. This frame is not generally equiva- 
lent to the zero-momentum frame. For instance, in a formulation in which 

p -- (e/c)A 
O -  H -- ec~ 

the momentum vanishes in the frame in which the velocity vanishes only at 
positions at which the vector potential vanishes. One can see that far from 
external interactions, the mass m* is equivalent to m; however, the general 
connection, both in terms of implicit dependencies as well as Lorentz frame 
of definition, is generally complicated. 

The identification in equation (12) preserves the form of the noninter- 
acting equations, and will be used henceforth. The mass in this equation 
can be interpreted as the zero-momentum form of the energy, which is held 
constant during the "boosts" which define the conjugate energy K in 
equation (5). The process to construct K using the identification in equa- 
tion (13) is more complicated and will hot be further explored in this paper. 
It should be noted that one could choose a gauge in which the single 
component A o = ~b vanishes in the inertial frame of reference. Of course, 
this choice will not result in a Lorentz-covariant representation of the 
gauge field. With this choice, the form of the previous equations is again 
preserved, and interactions are included. However, since the gauge is not 
covariant, the form of the term m*-e~b* would involve some interpreta- 
tions as to how the "boosts" to generate K are performed. We will 
therefore assume in what follows that the Hamiltonian for interacting 
systems has been expressed in a way in which the inertial and proper-time 
connection can be expressed as in equation (2). 

5. MULTIPARTICLE FORMULATION 

Next, the formulation will be examined in terms of subsystems and 
clusters of a classical system. The dynamics will be described in terms of the 
generalized coordinates and momenta q = {q, } and p = {Pr }, and a multi- 
particle Poisson bracket 

(OA c3B OA ~B)  
{A(p, q), B(p, q)} = ~ ~p~ ~qr Oqr ~p~ 

with corresponding Hamilton equations ~H/~pr = Or, dH/~qr = --Pr" 
The invariant zero-momentum energy of the system will be assumed to 

satisfy the condition 

M 2 - H, - -  ( p ) 2  (14) 

for subsystems labeled by energy H, and momentum Ps. The proper time of 
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the system will be written as 

Gill and Lindesay 

H 
at = ~ &  (15) 

where the total energy H has been expressed as the sum of the subsystem 
energies 

n(p ,  q) = E a , (p ,  q, t) (16) 
r 

The time evolution of a classical function W(q, p, t) can be written 

dW ~W 
dr (q' p' t) = {K, W} + 3--~- 

OW H ~ {H,, W} + (17) = ~  ~ 

where the bold coordinates represent the set of all qs and ps. It is 
convenient to examine the relationships between the various proper times 
of the subsystems. Notice that 

dt = H &  =Hr&, for any r (18) 
mr 

The various formulations of K previously discussed will be examined under 
this decomposition. 

For formulation (1), the functional K(o satisfies 

K=~-M +-~=TL~ Z H, + M (19) 

Identifying 1 = (H,/m,)&,/dt, one immediately obtains 

--dz,(H~ + y  + M -  (20) K = ~-~ \ 2m, -~ ~-d-~ m, 
Next, one can identify the zero-momentum total energy M as follows: 

dr 
M = E/-7, = E - - m ,  (21) 

r r dzr 
Thus 

- - <,.. I - ( d ,V_ , ] . .  
m - ~  = 2.; ~ Lt, ar d 

I-m 1].,. 

-Z~m, (22) 
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Thus, finally, 

Kr + 2m,_ l 

Here fir represents the momentum of the subsystem r as measured in the 
total zero-momentum frame, and Kr is the canonical proper energy func- 
tional for the subsystem r as calculated using the initial inertial coordinates 
p and q. 

The formulation K(2)= (H 2 -  p~)1/2 does not simply decompose, be- 
cause of the square root, and will therefore not be further explored in this 
context. 

The most direct decomposition occurs for the form/((3). By direct and 
immediate manipulation one obtains 

K(3) =-M- =~r -d~ \m~/  7~-T K(3lr (24) 

These various decompositions can be interpreted using the appropriate 
conjugate function Kr, boosted to the overall proper T frame, while 
correcting for any appropriate kinetic energy factors due to the difference 
in the inertial and proper frames of reference. 

6. CONCLUSIONS 

A canonical formulation of equations of motion has been presented 
which demonstrates dynamical evolution in terms of particle proper time, 
without the introduction of time as a fourth coordinate. The equations 
obtained are form invariant with regard to inertial observers, and the 
conjugate energy variable can be chosen to eliminate a square root form in 
the Hamiltonian. The covariance of the equations obtained involves only 
the use of observer coordinates for position and momenta of the various 
particles. The full implications of gauge transformations in this formulation 
remains to be explored. 

The formalism presents a straightforward correspondence limit for a 
quantum mechanical formulation, since the primary operation needed for 
the construction of evolution parameters involved only Poisson brackets. 
When the system is quantized, this should present a form-invariant formal- 
ism which avoids some of the problems associated with early formulations 
of relativistic quantum mechanics. With one of the formulations presented 
(K(I)), the dynamics solved takes on the form of standard nonrelativistic 
(Schr6dinger) dynamics, only expressed in terms of the particle proper time 
(which is generally noninertial). 
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